Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

```
CLASS - 6
    Question Paper Code : UM9279
```

KEY

1	2	3	4	5	6	7	8	9	10
C	C	B	A	D	B	A	C	A	B
11	12	13	14	15	16	17	18	19	20
C	C	B	D	A	C	A	B	D	B
21	22	23	24	25	26	27	28	29	30
A	A	D	B	B	D	C	C	D	C
31	32	33	34	35	36	37	38	39	40
A, B, C	A, B, C, D	A, B, D	A, D	A, B, C	B	Delete	D	D	D
41	42	43	44	45	46	47	48	49	50
A	Delete	D	A	B	A	C	A	C	D

EXPLANATIONS

MATHEMATICS - 1

1. (C) $a^{2} b^{2}-b^{2} c^{2}+c^{2} a^{2}=0^{2} \times 2^{2}-2^{2} \times 1^{2}+1^{2} \times 0^{2}$ $=0-4+0=-4$
2. (C) In isosceles triangle has one line symmetry
3. (B) Given $\frac{1}{5}: \frac{1}{x}=\frac{1}{x}: \frac{1}{0.45}$

$$
\begin{aligned}
& \therefore \frac{1}{x} \times \frac{1}{x}=\frac{1}{5} \times \frac{1}{0.45} \\
& \frac{1}{x^{2}}=\frac{1}{2.25}
\end{aligned}
$$

$\therefore \quad x^{2}=2.25$
$x^{2}=(1.5)^{2}$
$x=1.5$
4. (A) Given expression is $40-6 \mathrm{a}$
5. (D) $1835+60=1895$
$1895+60=1955$
$1955+60=2015$
$2015+60=2075$
6. (B) Length $=\frac{\text { Area }}{\text { breadth }}=\frac{80 \mathrm{~m}^{2}}{\left(\frac{16}{3}\right) \mathrm{m}}$
$8 Q^{5} \mathrm{~m}^{2} \times \frac{3}{16 \mathrm{~m}}=15 \mathrm{~m}$
Perimeter $=2(l+b)=2\left(15+\frac{16}{3}\right) \mathrm{m}$
$=2\left(\frac{45+16}{3}\right) \mathrm{m}=\frac{2 \times 61}{3}=\frac{122}{3} \mathrm{~m}$
$=40 \frac{2}{3} \mathrm{~m}$
7. (A) Yellow roses $=\left(1-\frac{1}{7}-\frac{3}{4}\right) \times 476$
$=\left(\frac{28-4-21}{28}\right) 476=\left(\frac{3}{2 \&_{1}}\right) 476^{17}$
$=51$
8. (C) $\mathrm{LHS}=144-\frac{1024^{32}}{32} \times 79+123$
$=144-2528+123$
$=-2261$
9. (A) In a rectangle each angle is 90°

Sum of four angles of a rectangle
$=4 \times 90=360^{\circ}$
10. (B) Given $2 x+5 x+7 x=280$
$14 x=280$
$x=\frac{280}{14}$
$x=20$
Difference of marbles between Hasan and Krish
$=7 x-5 x$
$=2 x=2 \times 20$
$=40$
11. (C) Total sweets having three children $=2 \times$ $13=26$

Number of sweets of Anu $=32-26=6$
12. (C) Given Chitra's having marbles $=$ Ganesh's marbles 210 marbles
Given Ganesh having marbles + 35 marbles $=98$ marbles
$\therefore \quad$ Ganesh having marbles $=98$ marbles $=35$ marbles $=63$ marbles
$\therefore \quad$ Chitra's having marbles $=63$ marbles + 210 marbles $=273$ marbles
Total marbles $=(273+63)$ marbles $=336$ marbles
13. (B) Option ' A ' 11 is a factor of 451 other than 1 and 451
$\therefore \quad 451$ is not a factor
Option 'B' except 1 and 479 there are no other factors
$\therefore \quad 479$ is a prime
Option ' C ' 19 and 23 are the factors of 437 other than 1 and 437
Option 'D' 7 and 67 are factors of 469 other than 1 and 469
$\therefore \quad 469$ is a composite number.
14. (D)

Total 10 poles required
15. (A) $L H S=\frac{\frac{13}{4}-\frac{4^{2}}{\not 2} \times \frac{\not D}{\not 6_{3}}}{\frac{13}{3} \times 5-\left(\frac{3}{10}+\frac{106}{5}\right)}$

$$
=\frac{\left(\frac{39-8}{12}\right)}{\frac{65}{3}-\left(\frac{3+212}{10}\right)}
$$

$$
=\frac{\frac{31}{12}}{\left(\frac{650-645}{30}\right)}
$$

$=\frac{\left(\frac{31}{12}\right)}{\left(\frac{5}{30_{6}}\right)}$
$=\frac{31}{12_{2}} \times \varnothing$
$=\frac{31}{2}$
$\therefore \quad \frac{31}{2}-\frac{1}{2}=\frac{30}{2}=15$ is an integer.
16. (C) $\mathrm{LM}=2 \mathrm{LO}=2 \mathrm{NO}$
17. (A) $99999999-100000=99899999$
18. (B) $L H S=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}$

$$
\begin{aligned}
& +\frac{1}{5 \times 6}+\frac{1}{6 \times 7}+\frac{1}{7 \times 8} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right) \\
& +\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)
\end{aligned}
$$

$$
=1-\frac{1}{k}+\frac{1}{2}-\frac{1}{k}+\frac{1}{k}-\frac{1}{4}+\frac{1}{4}
$$

$$
-\frac{1}{/ 5}+\frac{1}{/ 5}-\frac{1}{/ 6}+\frac{1}{/ 6}-\frac{1}{77}+\frac{1}{77}-\frac{1}{8}
$$

$$
=1-\frac{1}{8}
$$

$$
=\left(\frac{8-1}{8}\right)
$$

$$
=\left(\frac{7}{8}\right)
$$

19. (D) Multiplication of whole numbers satisfy closure, associative and commutative properties
20. (B) Required ratio $=4: 2=2: 1$
21. (A) A parallelogram has ' $n o$ ' line symmetry
22. (A) $6144<6344<6411$
23. (D) $-\frac{5}{6}=-0.83,-\frac{3}{4}=-0.75,-\frac{7}{12}=-0.58$

$$
\begin{aligned}
& -\frac{4}{5}=-0.8,-\frac{2}{3}=-0.66 \\
\therefore & -0.83<-0.8<-0.75<-0.66<-0.58
\end{aligned}
$$

$$
-\frac{5}{6}<-\frac{4}{5}<-\frac{3}{4}<-\frac{2}{3}<-\frac{7}{12}
$$

24. (B) Rule followed "Subtract 10, then divide the result by 2 "
25. (B)

26. (D) Given the ratio of $A \& B=1 \frac{1}{4}: 1 \frac{2}{3}=\frac{5}{4}: \frac{5}{3}$

$$
\begin{aligned}
& =\frac{5}{4} \times 12: \frac{5}{3} \times 12 \\
& =15^{3}: 2 \sigma^{4} \\
& =3: 4 \\
& =3 x: 4 x
\end{aligned}
$$

Given $3 x=₹ 360$

$$
x=\frac{₹ 360}{3}=₹ 120
$$

$\therefore \quad$ Total money $=3 x+4 x=7 x=7 \times ₹ 120$
= ₹840
27. (C) LHS $=\left(2 \times \frac{22}{7} \times \frac{3.5}{2}\right) \times \frac{3.5}{2}+\left(\frac{22}{7} \times \frac{3.5}{2} \times 3.6\right)$

$$
\begin{aligned}
& =\frac{22^{11}}{7_{2}} \times \frac{3.5^{1}}{2}\left(2 \times \frac{3.5}{2}+3.6\right) \\
& =\frac{11}{2} \times 7.1=\frac{78.1}{2}=39.05
\end{aligned}
$$

28. (C) Given original length and breadth be l \& b respectively
$\therefore \quad$ Original area $=l \times \mathrm{b}$
Given $\mathrm{L}=2 l \& B=2 \mathrm{~b}$
New area $=\mathrm{LB}=2 l \times 2 \mathrm{~b}=4 \times l \mathrm{~b}$
New area $=4$ times to original area.
29. (D) There are 7 numerals in Roman numeration system.
30. (C)

$$
\begin{aligned}
\text { LHS } & =\left(2-\frac{1}{2}\right)\left(2-\frac{2}{3}\right)\left(2-\frac{3}{4}\right) \ldots \ldots \times\left(2-\frac{2020}{2021}\right) \\
& =\left(\frac{4-1}{2}\right)\left(\frac{6-2}{3}\right)\left(\frac{8-3}{4}\right) \ldots \ldots\left(\frac{4042-2020}{2021}\right) \\
& =\frac{\not B}{2} \times \frac{A}{\not 2} \times \frac{\not B}{\nexists} \times \ldots . \times \frac{2022}{2021} \\
& =\frac{2022}{2} \\
& =1011
\end{aligned}
$$

MATHEMATICS - 2

31. (A,B,C)

Options $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are closed figure.
32. (A, B, C, D)

All statement are true about 1.
33. (A,B,D)

Options A, B \& D are false but option 'B' "Aline segment has definate length" is true.
34. (A, D)

Librarian has either 56 books (or) 112 books
35. (A, B, C)

The difference of two integers is also an integer. Hence closure property of subtraction satisfy addition, subtraction and multiplication.

REASONING

36. (B)

	A	B	C
Hill Stations	X	\checkmark	X
Historical Places	X	X	\checkmark
Industries	\checkmark	X	X

37. (Delete)
38. (D)
\hat{X}_{B}^{A}

Image 2
39. (D) The arrangement is Thus bus B is to left side of bus C.

Hence Option D is correct.
40. (D)

41. (A) $2 \times \&=24,2 \times @=18$ and $\#=21$

So, $24+18-21=3+18=21$
42. (Delete)
43. (D) The given sequence has alphabets that occur at even places. Vowels A, E, I, O, U occur at 1st, 5 th 9 th, 15 thand 21stplaces. We see that no vowel comes at an even place. Hence, it is not possible.
44. (A)

45. (B)

CRITICAL THINKING

46. (A)

47. (C)

48. (A) A

Distance between center pole and childrens is more in A compare with B. So, in picture A the children turns fast.
49. (C) Immediately take the child to hospital
50. (D) $2,3,1,5,4$

Rain \rightarrow Sun \rightarrow Rainbow \rightarrow Child \rightarrow Happy

